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Kriging is still a valuable estimation technique.  A map of kriged estimates is based on the 
available data and provides a smoother representation of variability than the truth.  Kriged 
estimates are appropriate for detecting and quantifying large-scale geological trends.  Universal 
kriging (UK) or kriging with a trend (KT) provides the least-squares estimate of the attribute of 
interest concurrently with the least-squares fit of a previously established deterministic trend 
function.  There are, however, several significant challenges facing the implementation of 
universal kriging algorithm.  Four issues are identified and described in this work: (1) the spatial 
law and stationarity, (2) simulation, (3) solution existence or singularity, and (4) data 
conditioning.  Particular attention is given to the issue of choosing the correct variogram model. 

Kriging Background 

Early methods of estimation included hand contouring, polygonal estimation, triangulation, 
inverse distance and moving window averages.  A description and comparative study of these 
conventional estimation techniques is given in [1].  Estimation algorithms have evolved to more 
sophisticated approaches based on optimization.  One particular problem with the earliest 
subjective mapping techniques was the sacrifice of local or conditional bias for global 
unbiasedness. Conditional bias is the systematic overestimation of high grades and 
underestimation of low grades [2].  Correcting this bias was of great concern to the pioneers of 
geostatistics.  In ore reserve valuation, the existence of truly lower grade stopes where higher 
grades were predicted was obviously undesirable.  The pioneering work of Danie Krige during 
the 1950s to correct conditional bias was the seed for the currently most popular group of 
estimation techniques collectively referred to as kriging [3].  The theory of kriging was 
formalized by Georges Matheron in 1961. 

The kriging estimator is often referred to with the BLUE acronym: Best since the estimate is 
optimum in that the error variance is a minimum; Linear since the estimate is a weighted linear 
combination of surrounding data; Unbiased since the expected value of the estimate and true 
value are the same; and Estimate. 

From the 1960s, kriging was used both for large scale trend visualization and calculating 
recoverable reserves for mine planning and economic forecasting.  The classic application of 
kriging to mine planning is discussed in [4].  From the early 1980s until present, however, the use 
of kriging or any type of estimation for production planning is no longer as strongly 
recommended due to the inherent smoothing effect and persistence of conditional bias [5] in these 
methods.  Simulation is becoming increasingly popular for production planning due to the ability 
to reproduce the correct amount of spatial variability through multiple equally probable 
geological realizations. 
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The Place of Kriging 

Kriging provides an estimate and an estimation variance at unsampled locations.  Under the 
assumption of a multivariate Gaussian distribution, the local kriging estimate and estimation 
variance identify the mean and variance and full parameterization of the local Gaussian ccdf.  
This is sometimes referred to as Multi-Gaussian (MG) kriging.  If all that is required is local 
uncertainty, MG kriging is appropriate.  The local Gaussian distributions of uncertainty are back 
transformed to original units. 

The assessment of joint uncertainty within some arbitrary volume requires sampling the 
multivariate distribution of multiple locations with simulation.  Kriging is often applied in a 
multivariate Gaussian context; however, values are sampled at each location rather than retaining 
a single best estimate.  The simulated values can then be combined to obtain a realization at the 
arbitrary support volume.  The addition of random residuals is repeated for a prescribed number 
of equally probable realizations from which a distribution of uncertainty can be constructed. 

Kriging is also used for detecting and quantifying large-scale geological trends.  The random 
function theory underlying the derivation of kriging equations is amenable to a wide variety of 
estimation schemes using conditioning data of different types, volume support, and quality [8]. 

The discussion in this paper is aimed at universal kriging (UK).  UK is sometimes referred to as 
kriging with a trend (KT).  UK amounts to specify the functional form of the locally varying 
mean model, then optimal estimation proceeds with an implicit fitting of this functional form with 
minimum squared error.  The UK algorithm allows the incorporation of varying types of 
deterministic trend information in the estimation of a single geological attribute of interest.  There 
are a number of implementation challenges. 

Kriging with a Trend 

Universal Kriging (UK) was developed by Matheron in 1969 [9].  The trend is a predetermined 
deterministic function of the coordinates.  The description below highlights the UK equations.  
Consider a random function (RF) Z(u) in a domain D composed of the set of random variables 
(RV), {Z(us), for all us ∈ D}.  UK implies the spatial distribution of the continuous random 
function Z(u) is of dual character: partly structured and partly stochastic. This notion of dual 
character can be represented analytically within the RF through the following additive 
decomposition: 

 ( ) ( ) ( )= +u u uZ m R   (1) 

where m(u) is the structured component or trend and R(u) is the random component or residual.  
This decision to split the spatial variability observed into a smoothly varying trend component 
and a random component is arbitrary [10].  Moreover, the particular additive decomposition in (1) 
is a necessary implication of the kriging algorithm, that is, all kriging imply an additive 
decomposition. 

The kriging estimator at an unsampled location u0 takes on the form: 

 K 0 K s s
s 1

( ) A ( ) ( )
=

= + ⋅∑u u uλ
n

*z z   (2) 
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A is a constant shift parameter and the λK(us)’s are the kriging weights assigned to the n 
surrounding z(us) sample data.  The estimate z*K(u0) and data z(us) can also be represented in 
probabilistic notation: 

 K 0 K s s
s 1

( ) A ( ) ( )
=

= + ⋅∑u u uλ
n

*Z Z   (3) 

The actual error of estimation e(u0) is: 

 0 0 K 0( ) ( ) ( )= −u u u*e z z   (4) 

Little can be done about this error unless its probabilistic version E(u0) is considered: 

 0 0 K 0( ) ( ) ( )= −u u u*E Z Z   (5) 

In this case, the expected value and variance of E(u0) can be calculated and thus acted upon.  In 
particular, we require the expected value of E(u0) to be zero for unbiasedness and the variance of 
E(u0) to be a minimum for optimality. The expected value of E(u0) is: 
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  (6) 

In order for the kriging estimator Z*K(u0) to be unbiased, this expected error must be zero. For 
this, the shift parameter A is set to: 

 0 K s s
s=1

A = ( ) ( ) ( )− ∑u u uλ
n

m m   (7) 

E{E(u0)} is now zero.  The kriging estimator in (3) is then: 
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The kriging estimator then appears as the result of linear estimation of the residual value r(u0) 
from the r(us) residual data.  This is true for any type of kriging.  This estimator requires the 
decomposition (1).  Although this decomposition is arbitrary in the sense that there is no physical 
evidence for it or actual r(us) sample data, it is necessary for an estimator to be formulated. 

The other moment of E(u0) required to develop the kriging equations is the variance: 
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The error variance is interpreted as the sum of the overall variance (first term), closeness (second 
term), and redundancy (last term) of the nearby r(us) residual data.  The error variance in (9) is 
general for all types of kriging.  Different flavors of kriging correspond to different models for 
the mean m(u), which require different constraints to attain unbiasedness in (6) and different 
procedures for minimizing the error variance in (9).  

The current approach to UK or KT is to assume the m(u) component is a smoothly varying 
deterministic function of the coordinates vector u whose unknown parameters are fit from the 
data within local search windows: 

 ( ) ( ) ( )
0

= ∑u u u
V

v v
v=

m a f   (10) 

The fv(u)’s are known and constant functions of the coordinate vectors over the domain D.  The 
av(u)’s are estimated and constant within local search windows centered on the unsampled 
locations. The actual m(u) trend values are unknown since the av(u)’s are also unknown. 

The shift parameter A then becomes: 

 ( ) ( ) ( ) ( )0 0 UK s s s
0 s=1 0

A ( )
V n V

v v v v
v= v=

a f a fλ= −∑ ∑ ∑u u u u u  (11) 

And the universal kriging estimator Z*UK(u0) is then: 
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 (12) 

There are many ways to ensure the universal kriging estimator Z*UK(u0) is unbiased.  The classic 
approach is to impose the following V + 1 constraint equations: 

 ( )UK s s 0
s=1

( ) ( ) 0,...,= =∑ u u uλ
n

v vf f v V   (13) 

where fv(u0) are the monomial trend functions evaluated at the unsampled locations within D and 
fv(us) are the monomial trend functions evaluated at the sampled locations.  By considering these 
constraints (13), the resulting universal kriging estimator Z*UK(u0) is then unbiased: 
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UK can be referred to as constrained kriging since there are V + 1 additional constraint equations 
in (13) that need to be imposed on the system in order to achieve unbiasedness in (14).  There are, 
however, many other possible constraints that can be imposed in order to achieve unbiasedness. 
Notice the universal kriging estimator in (12) is significantly reduced to a linear combination of 
the n universal kriging weights λUK(us) and RVs Z(us), s = 1,…, n, due to the unbiasedness 
constraints in (13).  

There remains to determine the universal kriging weights λUK(us).  These n weights are 
determined so that the error variance in relation (9) is a minimum.  However, the minimization 
must be performed subject to the V + 1 constraint equations in (13).  These constraints call for the 
definition of a Lagrangian function G(u0) that depends on the n universal kriging weights λUK(us) 
in addition to the Lagrange parameters 2μv(u0): 

 { } ( )0 0 0 UK s s 0
s=1

G( ) = VAR ( ) 2 ( ) ( ) ( ) 0,...,⎡ ⎤
+ − =⎢ ⎥

⎣ ⎦
∑u u u u u uμ λ

n

v v vE f f v V   (15) 

The optimal weights λUK(us) are obtained by setting the n partial derivatives of (15) with respect 
to λUK(us) to zero as well as the (V + 1) partial derivatives of (15) with respect to μv(u0) to zero: 
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(16) 

This results in the following system of universal kriging equations: 

 
{ } { }
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There are (n + V + 1) equations with n universal kriging weights λUK(us) and (V + 1)  Lagrange 
parameters μv(u0) to be determined.  From (9) and (17), the minimized universal kriging variance 
σ2

UK(u0) is then: 
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 ( ) ( )UK 0 UK s 0 s 0
s 1 0

( ) ( ) ( )2

=

σ = − − −∑ ∑u 0 u u u uλ μ
n V

R R v
v=

C C   (18) 

Ordinary kriging is a particular type of universal kriging whereby convention f0(u) = 1 and m(u) = 
a0(u).  This corresponds to the case where m(u) is re-estimated to a constant a0(u) value within 
local often overlapping search windows. 

Implementation Issues  

Four implementation issues are identified and described in this work: 

1. It is not the spatial law of the original Z(u) RF that is required to interpolate z(us) data using 
the unconstrained UK/KT equations.  It is actually the spatial law of R(u) that is required.  
The usual assumption of stationarity for Z(u) must then be transferred to the residual RF 
R(u).  Inference of this spatial law is difficult since R(u) is not sampled in reality and its 
realizations are only a product of the artificial construct in (1).  The emphasis of this paper is 
this first issue.  The logic and reasoning of this group of challenges are developed and 
explained with examples. 

2. Constrained UK/KT is not theoretically correct for implementation of simulation. 

3. There are several situations in which the estimation setting creates a singular matrix within 
the universal kriging system of equations.  Two typical circumstances for this situation are 
described with examples. 

4. The set of n conditioning data retained for the least squares estimation of the mean m(u) is 
not typically the same as for ordinary and simple kriging in practice. The reason for this is 
explained with an example. 

Stationarity and the Spatial Law 

Just like a single RV Z(u) at just one u0 location is fully characterized by its ccdf model F(u; 

z|(n)), the entire RF Z(u) is fully characterized by the set of all L-variate ccdfs: 

 ( ) ( )( ) ( ) ( ) ( ) ( ){ }1 1 1 1,..., ; ,..., Pr ob ,...,= ≤ ≤u u u uL L L LF z n z n Z z n Z z n  (19) 

for any number of RV locations L and any choice of the L locations ul, l = 1,…, L.  The 
multivariate ccdf in (19) describes the joint uncertainty about the L unknown z(u1),…, z(uL) 
values and is referred to as the spatial law of the RF Z(u).  For most practical geostatistical 
applications, inference of the spatial law is limited to the first two orders of the Z(u) RF 
corresponding to L = 1 and L = 2 in (19).  When L = 2, the two locations are typically denoted u 
and u′ = u + h where h is a separation or lag vector. The univariate ccdfs F(u; z|(n)) and first 
moment expected values are written:  

 
( )( ) ( ) ( ){ }
( ){ } ( )

; Pr ob

E

= ≤

=

u u

u u

F z n Z z n

Z m
 (20) 

And all bivariate ccdfs F(u,u’; z|(n), z’|(n’)) and second order covariance, correlation, and 
variogram measures are written as:  
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The problem of evaluating the spatial law of Z(u) reduces to that of inferring the ccdfs and 
moments in (20) and (21).  Geostatisticians typically use the experimental variogram γZ(h) instead 
of the covariance CZ(h) to quantify spatial correlation in practice.  The variogram is considered 
more robust in the presence of trends and departures from stationarity since it filters away any 
non-stationary or locally varying mean.  The covariance on the other hand is sensitive to the 
mean. 

Stationarity 

The spatial law of Z(u) is estimated with the z(us) data vector.  A decision of stationarity must be 
made in order to substitute the need for repetitive realizations at all ul locations for scattered 
(single realizations) sampling at us locations.  A strong assumption of stationarity entails 
invariance of the full L-variate joint distribution function under any translation h within the 
domain D: 

( ) ( )( ) ( ) ( )( )1 1 1 1,..., ; ( ) | ,..., ( ) | ,..., ; ( ) | ,..., ( ) |= + + + +u u u u u h u h u h u hL L L LF z n z n F z n z n  (22) 

Geostatistical techniques are normally applied with a less stringent second-order assumption of 
stationarity.  This entails relation (22) with L = 2. All single-variate ccdfs F(ul; z(ul)|(n)) are then 
equivalent to the ccdf formed by all available z(us) sample values within D. And all bivariate 
ccdfs F(ul, ul + h; z(ul)|(n), z(ul + h)|(n)) are equivalent to the joint distribution of all possible 
pairs of sample data approximately separated by h. This assumption or decision of second-order 
stationarity then implies the following first-order mean and second-order covariance properties:  

1. The mean is independent of location, 

 ( ){ }E m= ∀ ∈u u Dl lZ   (23) 

2. The covariance is independent of location depending only on the lag vector h, 

 ( ) ( ) ( ){ } 2E m ,= + ⋅ − ∀ + ∈h u h u u u h DZ l l l lC Z Z   (24) 

The assumption of stationarity allows inference.  In particular, the spatial law of Z(u) can be 
assessed by evaluating C{Z(ul), Z(ul) + h} with CZ(h) which is simply the experimental 
covariance of all pairs of sample data approximately separated by h (z(us), z(us + h)). 

Decisions of stationarity are a necessary consequence of the random function approach.  These 
decisions amount to assume the geology is homogeneous within certain spatial domains, (23) and 
(24).  Decisions of stationarity are necessarily subjective and cannot be tested a-priori, but they 
can be argued inappropriate a-posteriori. 
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The Spatial Law for Non-Stationary Kriging 

Making an assumption of first order stationarity (SK), the spatial law of R(u) and Z(u) are the 
same; however, this is not the case when a locally varying mean such as in (10) is used in 
UK/KT.  Interestingly, it is actually the spatial law of the unknown and unsampled R(u) RF that 
is required and not the spatial law of Z(u).  The residuals are also assumed second-order 
stationary, replace Z with R in (19) to (24).  The spatial law of R(u) is calculated with all residual 
data approximately separated by h, (r(us), r(us + h)). 

Significant problems arise in calculating either the variogram γZ(h) or covariance CZ(h).  These 
can all be rooted to the fact that the residual data, r(us) = z(us) – m(us), are not actually data since 
they exist only as an artifact of the construct assumed in (1), which was necessary to perform 
non-stationary kriging.  This key section of the paper is devoted to investigating this notion 
further and revealing specific reasons why the spatial law of residuals is notoriously difficult to 
capture in practice. 

To start, the residual covariance and variogram decomposition following (1) is presented.  Next 
an analytical calculation of the decomposed second order moments for an entirely parameterized 
1D example is performed.  This exercise shows the residual and original variable variogram are 
roughly equal up to reasonable separation vectors h.  A simple modification of the example then 
shows that this is seldom the case in practice. And finally, two reasons for the separation between 
theory and practice are then presented. 

Residual Covariance and Variogram Decomposition 

Decomposition of the Z(u) RF according to (1) leads to the following covariance relation: 

 { } { } { } { } { }( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )
( ) ( ) 2 ( )m R mR

C Z Z C m m C R R C m R C m R
C C C

= + + +

= + +

u u + h u u + h u u + h u u + h u + h u
h h h

(25) 

Similarly, the variogram is decomposed as: 

 { } { } { } { } { }
m R mR

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )
( ) ( ) 2 ( )

Z Z m m R R m R m Rγ γ γ γ γ
γ γ γ

= + + +

= + +

u u + h u u + h u u + h u u + h u + h u
h h h

(26) 

The amount of variability modeled by the trend m(u) is a subjective balance between determinism 
and stochasticity. In all cases, the trend should model no more variability than what our 
deterministic understanding of the geological processes suggests. 

Analytically Determined Residual Spatial Law 

Consider the porosity profile shown in the Figure 1. There is a clear fining downward trend in the 
porosity variable. For this part of the example, the mean function is fully defined. The locally 
varying mean/trend function m(u) is represented by red in the figure. Its analytical form exhibits a 
linear increase from 10% to 25% porosity over the 20m elevation interval, that is: m(u) = 10 + 
15(Z/20). In order to generate the porosity variable RF Z(u), the residual RF R(u) is needed, see 
(1). A 20m long string of residuals is generated according to a 10cm elevation increment and a 
spherical variogram with 5m range. The distribution of r(u) values is normal with mean and 
variance of zero and 0.25. SGSIM from GSLIB [12] was used to impart spatial correlation to the 
residuals. The Z(u) random function (jagged blue line) is then obtained by adding m(u) and r(u). 
The 5m residual range and variance are apparent. 



118-9 

 
Figure 1: A simple 1D porosity profile with fully parameterized linear mean function (red). The 
example shows trend modeling practice is often dangerous.  

The decomposed variograms in (26) are calculated and plotted in Figure 2 for the porosity profile 
shown in Figure 1.  The most important observation is that the original variable and residual 
variable variograms are the same for reasonably small lag vectors.  The point where their 
separation begins to be significant occurs at h ~ 3m and continues for larger h. The reason for the 
separation, the point where it begins, and its severity all depend on the mean variogram model. 

Consider another example where the mean model is a constant arithmetic average, m(u) = 17.5%. 
This would be the case for an SK implementation. Here, the variogram model would be zero and 
the residual and original variable variograms would coincide over all h. As we consider non-
stationarities and model more variability in the mean and later variogram, the separation between 
residual and original variable variograms increases in magnitude at smaller h. We investigate this 
relationship further with a numerical example in the next section. 
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Figure 2: The original variable (blue), residual variable (green), and mean variable (red) 
variograms for the porosity profile previously shown in Figure 1. 

Experimentally Determined Residual Spatial Law 

The variograms for the original variable and residual are the same for reasonably small lag 
vectors.  As more variability is modeled by m(u) and γm(h), the separation between γZ(h) and 
γR(h) is more severe and occurs at shorter h.  This is part of the problem in practice.  Too much 
variability is modeled by m(u) and γm(h).  Most techniques for trend modeling rely heavily on the 
available z(u) data and not enough on deterministic geological knowledge for the trend model.  In 
the most extreme yet not uncommon cases, the residual variogram γR(h) even appears as almost a 
pure nugget effect.  Clearly this is incorrect for predicting within the UK system of equations that 
requires the spatial law of residuals R(u).  Modeling the trend must be revisited.   

Consider again the setting in Figure 1. This time we assume the z(u) data (jagged blue line) is a 
given profile from a logging tool or core analysis. A typical trend modeling technique is applied 
to obtain a locally varying mean model. The method chosen here is a block ordinary kriging 
estimating along the 20m string at 10cm elevation increments with 10 discretization locations for 
each of the 200 estimation sites. A larger 30% nugget effect, large search, and longer 10m range 
are used for the model variogram to ensure the trend model is smooth. KT3D from GSLIB [12] is 
used to perform the kriging. Other smooth trend modeling techniques are commonly implemented 
in practical cases; similar methods create the same problems. The resulting trend model is 
represented by the red line in Figure 3. The R(u) random function is then obtained by simply 
subtracting the locally varying mean m(u) from the original variable z(u). 
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Figure 3: The porosity profile from Figure 1 with an experimentally determined trend model 
created with block ordinary kriging.  

The decomposed variograms in (26) are calculated and plotted in Figure 4 for the porosity profile 
shown in Figure 3. Notice first the additional variability in the mean variogram. This can be seen 
by comparing the mean profiles in Figures 1 and 3 or the mean variograms in Figures 2 and 4. 
This additional variability does not change the variability in the original variable; however, it 
does affect the variability of the residual. That is, the residual variable has lost spatial correlation 
to the mean variable. The residual variogram for instance has a range of only about 3 h 
increments or 30cm and departs significantly from the original variable variogram immediately at 
about the same distance.  

The porosity variable in this 1D example is structured. Certainly there is a fining downward trend 
in the porosity variable. Kriging with a trend (KT) or universal kriging (UK) can be used to 
automatically account for this trend. For this, the residual spatial law captured by the residual 
variogram is required. However, it would be incorrect to use the almost pure nugget effect 
residual variogram in Figure 4 caused by modeling too much variability in the mean. It is possible 
to use a combination of the residual and variable variogram for modeling the spatial law, for 
example, the shorter-scale residual variogram and longer-range variable variogram. Perhaps a 
better approach, however, is to model only the variability afforded through deterministic 
observations (Figure 1 and 2) rather than a combination of determinism and hard data 
conditioning (Figure 3 and 4). This subjective choice is certainly a key implementation challenge 
facing non-stationary kriging. 

Reasons for Difference between Theory and Practice 

The difference between the residual variogram from the original variable variogram is attributable 
to (1) an overfitting of the trend to the original data, and (2) significant correlation between the 
mean and residual.  The first reason is made clear in the previously presented examples.  The 
second reason is more subtle.  Notice the covariance terms in (25) and (26).  Of course if these 
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terms are significant, the original variable variability is difficult to match.  Artifacts due to the 
residual-mean remnant correlation potentially exist [6] when these covariance terms are 
significant.  

Simulation and Non-Stationary Kriging 

Consider the following criteria for a map of any particular petrophysical property z predicting at 
unsampled u0 locations with Z*(u0) from a set of z(us) samples: 

1. The data-to-data covariance C(us – us’) involving the z(us) samples is reproduced; 

2. The estimate-to-estimate covariance C(u0 – u0) or equivalently the variance of the 
estimates VAR{Z*(u0)} reproduces the stationary variance σ2; 
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Figure 4: The original variable (blue), residual variable (green), and mean variable (red) 
variograms for the porosity profile previously shown in Figure 3. 

3. The estimate-to-data covariance C(u0 – us) involving the z*(u0) values and z(us) samples is 
reproduced before and after estimation. 

The motivation for simulation can be derived by evaluating these criteria for SK. The first of 
these three conditions is easily met. The z(us) sample data do not change from before to after 
estimation; therefore, the data-to-data covariance C(us – us’) remains the same. The second 
condition involves the new z*SK(u0) estimates and should be checked: 
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The variance of the estimates VAR{Z*(u0)} is underestimated by an amount equal to the SK 
estimation variance.  This is known as the smoothing effect of kriging, which is prevalent in all 
flavors of kriging.  The degree of smoothing depends on location.  In particular, far away from 
data, the covariance decreases, the kriging variance increases, and there is more smoothing.  
Close to data, the covariance increases, the kriging variance decreases, and there is less 
smoothing.  Ideally, the variance of the kriging estimator Z*(u0) would be the global variance σ2 
in expected value.  This motivates simulation. 

Simulation acts to correct the variance via the addition of a random residual Q(u): 

 SGS 0 0 0( ) ( ) + ( )=u u uR R* Q   (28) 

The residual is drawn randomly from a Gaussian distribution with an expected value of zero and 
variance equal to the kriging variance σ2*SK(u0).  This does not change the optimal kriging 
estimate z*SK(u0), but does act to increase the variance by the amount missing in (27), that is, the 
variance of the newly simulated values zSGS(u0) is the correct global variance σ2.  The third 
condition also involves new z*SK(u0) estimates and should also be checked: 
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Therefore, in probabilistic terms, the third condition is also satisfied for SK. Moreover, it can be 
shown that the addition of the random residual Q(u) does not change the estimate-to-data 
covariance reproduction.  Therefore, while the simulated values zSGS(u0) satisfy all three criteria, 
the simple kriging values z*SK(u0) satisfies only the first two. 

Note the use of the SK system of equations with no V constraints to make the last substitution. 
This third condition of estimate-to-data covariance reproduction is only met with unconstrained 
simple kriging. For UK/KT: 

 ( ) ( )0 s 0 s 0 s
0

( ) ( )− ≠ − − ∑u u u u u uμ
V

R R v v
v=

C C f  (30) 
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The constrained kriging system of equations does not allow the third condition to be satisfied 
because of the inclusion of Lagrange parameters in the systems of equations.  This means that 
constrained kriging should not theoretically be used in simulation-based algorithms.  The popular 
alternative of integrating an estimated trend model by performing geostatistical simulation of the 
residuals and adding the simulated model back to the trend model is a result of this limitation. 

Singularity and Solution Existence 

There are some constrained estimation settings that produce singular matrices within the 
subsequent UK/KT systems. The left-hand-side redundancy covariance and constraint matrix in 
(17) must be a non-singular matrix in order for its inverse to exist and to calculate the λUK(us) 
weights, μv(u0) Lagrange parameters, z*UK(u0) universal kriging estimate, and σ2

UK(u0) universal 
kriging variance. With SK, the possibilities for singular redundancy matrices are small barring 
computer precision issues. However, the constraint equations involved in UK/KT (13) can 
potentially create singular matrices. 

Two situations in which singular UK redundancy covariance-constraint matrices occur are 
addressed.  Figure 5 shows a schematic 2D illustration of the setting for each situation.  Although 
computer precision can also cause singular matrices, numerical instabilities are not discussed here 
in detail.  This type of situation is too sensitive to computer resources to discuss in detail.  

The first typical cause of a singular matrix is when the number of data n is greater than the 
number of constraint equations V. Figure 5 (left) shows an estimation location with n = 2 sample 
data and V = 2 constraint equations (3 in total). The constraint equations correspond to a linear 
mean in both the X and Y coordinates. The missing covariances C(R(u1),R(us)) = C(R(us),R(u1)), s 
= 1, 2, 3, create a rectangular redundancy matrix that theoretically has no inverse. In general, the 
number of sample data n and number of constraint equations V must follow n ≥ (V + 1) in order 
for a solution to exist. 

 
Figure 5: An illustration of two common causes of singular non-invertible redundancy 
covariance-constraint matrices within the constrained UK or KT systems of equations. 

The other typical cause of a singular matrix is when the sample data is perfectly aligned in a 
straight line perpendicular to the direction in which the mean is a function.  For example, consider 
fitting a linear mean model as a function of the X coordinate in Figure 5 (right) where n = 3 data 
are shown perfectly aligned in the Y direction.  It is impossible to fit a mean that is a function of 
the X coordinate using the three data with equal X coordinate vector components.  The resulting 
redundancy matrix would be singular and not permit an inverse to be calculated.  In general, the 
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sample data must have various location vector components in the direction in which the mean is a 
function in order for a solution to exist. 

Sample Data Conditioning 

A well understood but poorly implemented principle in the practice of modeling non-stationarity 
is that the trend should model no more variability than what our deterministic understanding of 
the geological processes suggests [6]. Often the trend represents too much variability in practice. 
Indeed, modeling the trend with an automatic least squares optimum fit of a deterministically 
established polynomial form for the locally varying mean m(u) is then illusive. Two major 
reasons why the KT system can potentially yield misleading m(u) fits are given here. 

The first reason arises from a subjective choice of the explicit polynomial form for the mean in 
(10). There are infrequently cases where the balance between the degree of homogeneity and 
available data is such that a polynomial form with V > 0 is necessary. That is, the data may 
intrinsically reproduce an anticipated linear geological trend in the X coordinate without explicitly 
specifying the m(u) polynomial up to V = 1. Or smaller estimation domains can be considered so 
that the trend is less significant. 

The second reason is the automatic least squares fitting of the m(u) polynomial function. The 
av(u) polynomial trend coefficients are fit using a least squares weighted linear combination of 
the n surrounding data. The BLUE criteria for the consequent m*(u) estimates in this case are 
dangerously objective in that past deciding the functional form of m(u) there is no direct or 
deterministic control on the final mean m*(u). Inevitably m*(u) is more objective and variable 
than what our deterministic understanding of the geological processes suggest. Discontinuities in 
m*(u) are particularly frequent and problematic. These discontinuities typically arise from search 
windows retaining less data than the total available within the overall estimation domain. At 
estimation locations where new/different data is retained, m*(u) can show a discontinuity. 
Therefore, although it is not theoretically required, best practice is to use a global search so that n 
coincides with the number of available data within the domain.  

Figure 6 shows a small 1D example. There are 5 data along a 100m 1D line in the X direction 
(green bullets). It is previously known that there is a linear geological trend in the variable. This 
knowledge is particularly important where there are few data from about X = 40m to X = 70m 
(between vertical red lines). UK is used to account for the linear trend automatically where a V = 
1 polynomial trend function, m(u) = a0(u) + a1(u)x, is to be fit. The top two figures show the 
estimated trend (left) and variable (right) using a limited search retaining at least two (V + 1) and 
at most 3 sample data. The bottom two figures show the estimated trend and variable using a 
global search retaining all 5 data in each case. Note the discontinuity in the trend and variable 
estimated profiles where the trend is important; these profiles are not consistent with previous 
deterministic trend knowledge. Discontinuities such as these are often not realistic in practice. In 
contrast, the global search produces a trend and variable estimated profile consistent with prior 
deterministic knowledge. In general, a global search is recommended to fit the trend functionals. 
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Figure 6: A simple 1D illustration of the importance of a global search in kriging with a trend 
(KT). 

Conclusion 

Kriging is a best estimator in the sense that the error variance between true values and estimates 
is a minimum.  Although inappropriate for making production-based decisions, kriging is still 
remarkably flexible for detecting and quantifying large-scale geological trends.  This work dealt 
with universal kriging (UK).  Four implementation challenges associated with UK system of 
equations were addressed in this paper. These include: (1) The subjective choice for the mean 
model and its implication on the residual spatial law for the KT or UK systems of equations; (2) 
The use of non-stationary kriging in the implementation of simulation; (3) Situations when the 
setting creates a singular matrix and no solution exists; and (4) The group of conditioning data 
retained for the least squares estimation of the mean. 

Due to these and other implementation details and especially the limitation for simulation 
applications, the authors still do not recommend the use of KT/UK for any other purpose other 
than to grasp large-scale geological trends. 
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